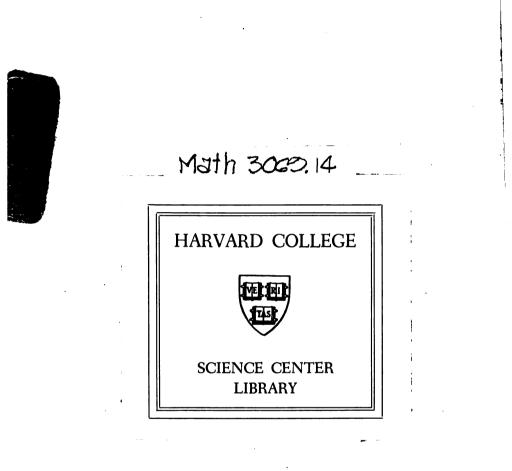


This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines


Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

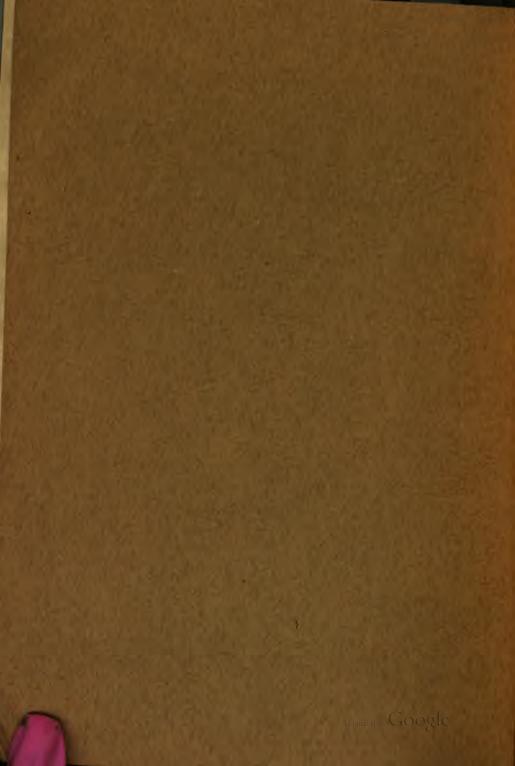
- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + *Refrain from automated querying* Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + Keep it legal Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

A SHORT TABLE OF INTEGRALS

COMPLED BY


B. O. PEIRCE

LATE DELLS PROFESSION OF SATURATES AND BATTERS PRESSOOPER IN RADIANCE WATCHING TO ADDRESS

ABRIDGED EDITION

GINN AND COMPANY

PROTON - NEW YORK - COLORED - LAWYON

A SHORT TABLE OF INTEGRALS

N. WEBSTER GOKEY 535 Newbury St., Boston, Mass.

COMPILED BY

B. O. PEIRCE

LATE HOLLIS PROFESSOR OF MATHEMATICS AND NATURAL PHILOSOPHY IN HARVARD UNIVERSITY

ABRIDGED EDITION

GINN AND COMPANY

BOSTON · NEW YORK · CHICAGO · LONDON ATLANTA · DALLAS · COLUMBUS · SAN FRANCISCO

Math 3069.14

HARVARD UNIVERSITY LIBRARY ių. 21, a. J. F. Stary James Jak

COPYRIGHT, 1914, BY GINN AND COMPANY ALL RIGHTS RESERVED 515.7

The Athenzum Press GINN AND COMPANY · PRO-PRIETORS · BOSTON · U.S.A.

Digitized by Google

FUNDAMENTAL EQUATIONS

1.
$$\int a \cdot f(x) dx = a \int f(x) dx; \quad \int \phi(y) dx = \int \frac{\phi(y)}{y'} dy, \text{ where } y' = dy/dx.$$
2.
$$\int (u+v) dx = \int u dx + \int v dx, \text{ where } u \text{ and } v \text{ are any functions of } x.$$
3.
$$\int u dv = uv - \int v du; \quad \int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx.$$
4.
$$\int x^m dx = \frac{x^{m+1}}{m+1}, \text{ if } m \neq -1; \quad \int \frac{dx}{x} = \log x, \text{ or } \log(-x).$$
5.
$$\int e^{ax} dx = e^{ax}/a; \quad \int b^{ax} dx = \frac{b^{ax}}{a \log b}.$$
6.
$$\int \sin x dx = -\cos x; \quad \int \cos x dx = \sin x.$$

$$\int \tan x dx = -\log \cos x; \quad \int \cot x dx = \log \sin x.$$

$$\int \sec^2 x dx = \tan x; \quad \int \operatorname{sce}^2 x dx = -\operatorname{ctn} x.$$
7.
$$\int \cosh x dx = \sinh x; \quad \int \sinh x dx = \cosh x.$$

$$\int \tanh x dx = \log \cosh x; \quad \int \coth x = \log \sinh x.$$
8.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1}(\frac{x}{a}), \text{ or } -\frac{1}{a} \operatorname{ctn}^{-1}(\frac{x}{a}).$$

$$\int \frac{dx}{a^2 - x^2} = -\frac{1}{a} \operatorname{ctn}^{-1}(\frac{x}{a}), \text{ or } \frac{1}{2a} \log \frac{x - a}{x + a}.$$

$$3$$

FUNDAMENTAL EQUATIONS

9.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right), \text{ or } - \cos^{-1}\left(\frac{x}{a}\right).$$
$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \log\left(x + \sqrt{x^2 \pm a^2}\right).$$
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a}\cos^{-1}\left(\frac{a}{x}\right).$$
$$\int \frac{dx}{x\sqrt{a^2 \pm x^2}} = -\frac{1}{a}\log\left(\frac{a + \sqrt{a^2 \pm x^2}}{x}\right).$$
10.
$$\int \frac{dx}{x\sqrt{a + bx}} = \frac{2}{\sqrt{-a}}\tan^{-1}\sqrt{\frac{a + bx}{-a}}, \text{ or } \frac{-2}{\sqrt{a}}\tanh^{-1}\sqrt{\frac{a + bx}{a}}.$$

In such a case as this, that one of the alternate values of the integral which makes the quantities under the radical signs positive is to be used, and each radical itself is to be considered positive. Of course an arbitrary constant may be added to the value of every integral given in this pamphlet.

11.
$$e^{xi} = \cos x + i \sin x$$
; $e^{-xi} = \cos x - i \sin x$.
12. $\sinh x = \frac{1}{2}(e^x - e^{-x})$; $\cosh x = \frac{1}{2}(e^x + e^{-x})$.
13. $\sin xi = i \sinh x$; $\cos xi = \cosh x$.
14. $\sin x = -i \sinh xi$; $\cos x = \cosh xi$.
15. $\log u = \log (cu) - \log c$.
16. $\log x = \log (-x) + (2k + 1)\pi i$; $\log_e x = (2.3025851) \cdot \log_{10} x$.
17. $\log (x \pm yi) = \frac{1}{2} \log (x^2 + y^2) \pm i \tan^{-1}(y/x)$.

For acute angles and some other cases easily to be determined in each instance,

18. $\sin^{-1}u = \cos^{-1}\sqrt{1-u^2} = \tan^{-1}(u/\sqrt{1-u^2}) = \csc^{-1}(1/u).$

19. $\sin^{-1}u = -\sin^{-1}\sqrt{1-u^2} + a \operatorname{constant} = \frac{1}{2}\sin^{-1}(2u^2-1) + a \operatorname{constant}.$

20. $\tan^{-1}u = -\tan^{-1}(1/u) + a$ constant.

4

RATIONAL ALGEBRAIC FUNCTIONS

I. RATIONAL ALGEBRAIC FUNCTIONS

A. EXPRESSIONS INVOLVING (a + bx)

The substitution of y or z for x, where y = xz = a + bx, gives

21.
$$\int (a + bx)^{m} dx = \frac{1}{b} \int y^{m} dy.$$

22.
$$\int x (a + bx)^{m} dx = \frac{1}{b^{2}} \int y^{m} (y - a) dy.$$

23.
$$\int x^{n} (a + bx)^{m} dx = \frac{1}{b^{n+1}} \int y^{m} (y - a)^{n} dy.$$

24.
$$\int \frac{x^{n} dx}{(a + bx)^{m}} = \frac{1}{b^{n+1}} \int \frac{(y - a)^{n} dy}{y^{m}}.$$

25.
$$\int \frac{dx}{x^{n} (a + bx)^{m}} = -\frac{1}{a^{m+n-1}} \int \frac{(z - b)^{m+n-2} dz}{z^{m}}.$$

Whence

26.
$$\int \frac{dx}{a+bx} = \frac{1}{b} \log (a+bx).$$

27.
$$\int \frac{dx}{(a+bx)^2} = -\frac{1}{b(a+bx)}.$$

28.
$$\int \frac{dx}{(a+bx)^8} = -\frac{1}{2b(a+bx)^2}.$$

29.
$$\int \frac{xdx}{a+bx} = \frac{1}{b^2} [a+bx-a\log(a+bx)].$$

30.
$$\int \frac{xdx}{(a+bx)^3} = \frac{1}{b^2} \Big[\log (a+bx) + \frac{a}{a+bx} \Big].$$

$$31. \int \frac{xdx}{(a+bx)^8} = \frac{1}{b^2} \left[-\frac{1}{a+bx} + \frac{a}{2(a+bx)^2} \right].$$

$$32. \int \frac{x^2 dx}{a+bx} = \frac{1}{b^3} \left[\frac{1}{2} (a+bx)^2 - 2 a (a+bx) + a^2 \log (a+bx) \right].$$

$$33. \int \frac{x^2 dx}{(a+bx)^2} = \frac{1}{b^3} \left[a+bx-2 a \log (a+bx) - \frac{a^2}{a+bx} \right].$$

$$34. \int \frac{dx}{x(a+bx)} = -\frac{1}{a} \log \frac{a+bx}{x}.$$

$$35. \int \frac{dx}{x(a+bx)^2} = \frac{1}{a(a+bx)} - \frac{1}{a^2} \log \frac{a+bx}{x}.$$

$$36. \int \frac{dx}{x^3(a+bx)} = -\frac{1}{ax} + \frac{b}{a^3} \log \frac{a+bx}{x}.$$

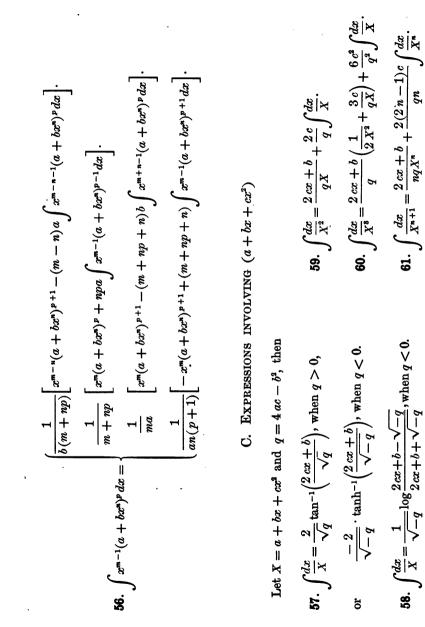
B. EXPRESSIONS INVOLVING $(a + bx^{*})$

$$37. \int \frac{dx}{c^{3} + x^{3}} = \frac{1}{c} \tan^{-1} \frac{x}{c} = \frac{1}{c} \sin^{-1} \frac{x}{\sqrt{c^{2} + x^{2}}}.$$

$$38. \int \frac{dx}{c^{2} - x^{2}} = \frac{1}{2c} \log \frac{c + x}{c - x}; \int \frac{dx}{x^{2} - c^{2}} = \frac{1}{2c} \log \frac{x - c}{x + c}.$$

$$\int \frac{dx}{c^{2} - x^{2}} = \frac{1}{c} \tanh^{-1} \left(\frac{x}{c}\right); \int \frac{dx}{x^{2} - c^{2}} = -\frac{1}{c} \tanh^{-1} \left(\frac{x}{c}\right).$$

$$39. \int \frac{dx}{a + bx^{3}} = \frac{1}{\sqrt{ab}} \tan^{-1} \left(x \sqrt{\frac{b}{a}}\right), [a > 0, b > 0].$$


$$40. \int \frac{dx}{a + bx^{2}} = \frac{1}{2\sqrt{-ab}} \log \frac{\sqrt{a} + x\sqrt{-b}}{\sqrt{a - x}\sqrt{-b}},$$
or
$$\frac{1}{\sqrt{-ab}} \tanh^{-1} \left(x \sqrt{\frac{-b}{a}}\right), [a > 0, b < 0].$$

$$41. \int \frac{dx}{(a + bx^{2})^{2}} = \frac{x}{2a(a + bx^{2})} + \frac{1}{2a} \int \frac{dx}{a + bx^{2}}.$$

Digitized by Google

:

42. $\int \frac{dx}{(a+bx^2)^{m+1}} = \frac{1}{2ma} \frac{x}{(a+bx^2)^m} + \frac{2m-1}{2ma} \int \frac{dx}{(a+bx^2)^m}.$ $43. \quad \int \frac{x dx}{a + h x^2} = \frac{1}{2h} \log\left(x^2 + \frac{a}{h}\right).$ 44. $\int \frac{x dx}{(a+bx^2)^{m+1}} = \frac{1}{2} \int \frac{dz}{(a+bz)^{m+1}}, [z=x^2].$ 45. $\int \frac{dx}{x(a+bx^2)} = \frac{1}{2a} \log \frac{x^2}{a+bx^2}$ $46. \quad \int \frac{x^2 dx}{a+bx^2} = \frac{x}{b} - \frac{a}{b} \int \frac{dx}{a+bx^2}.$ 47. $\int \frac{dx}{dx^2(a+bx^2)} = -\frac{1}{ax} - \frac{b}{a} \int \frac{dx}{a+bx^2}$ 48. $\int \frac{x^2 dx}{(a+bx^2)^{m+1}} = \frac{-x}{2 m b (a+bx^2)^m} + \frac{1}{2 m b} \int \frac{dx}{(a+bx^2)^m} dx$ **49.** $\int \frac{dx}{x^2(a+bx^2)^{m+1}} = \frac{1}{a} \int \frac{dx}{x^2(a+bx^2)^m} - \frac{b}{a} \int \frac{dx}{(a+bx^2)^{m+1}}.$ 50. $\int \frac{dx}{a+bx^3} = \frac{k}{3a} \left[\frac{1}{2} \log \frac{(k+x)^3}{b^2 - bx + x^3} + \sqrt{3} \tan^{-1} \frac{2x-k}{bx/2} \right], \ [bk^3 = a].$ 51. $\int \frac{x dx}{a + bx^8} = \frac{1}{3 bk} \left[\frac{1}{2} \log \frac{k^2 - kx + x^2}{(k + x)^2} + \sqrt{3} \tan^{-1} \frac{2x - k}{k \sqrt{3}} \right], \ [bk^8 = a].$ 52. $\int \frac{dx}{x(a+bx^*)} = \frac{1}{an} \log \frac{x^*}{a+bx^*}$ 53. $\int \frac{dx}{(a+bx^n)^{m+1}} = \frac{1}{a} \int \frac{dx}{(a+bx^n)^m} - \frac{b}{a} \int \frac{x^n dx}{(a+bx^n)^{m+1}}$ 54. $\int \frac{x^m dx}{(a+bx^n)^{p+1}} = \frac{1}{b!} \int \frac{x^{m-n}}{(a+bx^n)^p} - \frac{a}{b!} \int \frac{x^{m-n} dx}{(a+bx^n)^{p+1}} dx$ 55. $\int \frac{dx}{x^m (a+bx^n)^{p+1}} = \frac{1}{a} \int \frac{dx}{x^m (a+bx^n)^p} - \frac{b}{a} \int \frac{dx}{x^{m-n} (a+bx^n)^{p+1}} \cdot \frac{dx}{x^{m-n}} \cdot \frac{dx}{x^{m-n} (a+bx^n)^{p+1}} \cdot \frac{dx}{x^{m-n} (a+bx^n)^{p+1}}$

8

$$62. \int \frac{xdx}{X} = \frac{1}{2c} \log X - \frac{b}{2c} \int \frac{dx}{X}.$$

$$63. \int \frac{xdx}{X^2} = -\frac{bx + 2a}{qX} - \frac{b}{q} \int \frac{dx}{X}.$$

$$64. \int \frac{xdx}{X^{n+1}} = -\frac{2a + bx}{nqX^n} - \frac{b(2n-1)}{nq} \int \frac{dx}{X^n}.$$

$$65. \int \frac{x^4}{X} dx = \frac{x}{c} - \frac{b}{2c^2} \log X + \frac{b^2 - 2ac}{2c^2} \int \frac{dx}{X}.$$

$$66. \int \frac{x^4}{X^2} dx = \frac{(b^2 - 2ac)x + ab}{cqX} + \frac{2a}{q} \int \frac{dx}{X}.$$

$$67. \int \frac{x^m dx}{X^{n+1}} = -\frac{x^{m-1}}{(2n-m+1)cX^n} - \frac{n-m+1}{2n-m+1} \cdot \frac{b}{c} \int \frac{x^{m-1} dx}{X^{n+1}} + \frac{m-1}{2n-m+1} \cdot \frac{a}{c} \int \frac{x^{m-2} dx}{X^{n+1}}.$$

$$68. \int \frac{ax}{xX} = \frac{1}{2a} \log \frac{x^2}{X} - \frac{b}{2a} \int \frac{dx}{X}.$$

69.
$$\int \frac{dx}{x^2 X} = \frac{b}{2 a^2} \log \frac{X}{x^2} - \frac{1}{ax} + \left(\frac{b^2}{2 a^2} - \frac{c}{a}\right) \int \frac{dx}{X}.$$

70.
$$\int \frac{dx}{x^m X^{n+1}} = -\frac{1}{(m-1)ax^{m-1}X^n} - \frac{n+m-1}{m-1} \cdot \frac{b}{a} \int \frac{dx}{x^{m-1}X^{n+1}} - \frac{2n+m-1}{m-1} \cdot \frac{c}{a} \int \frac{dx}{x^{m-2}X^{n+1}}$$

9

Digitized by Google

•

D. RATIONAL FRACTIONS

Every proper fraction can be represented by the general form :

$$\frac{f(x)}{F(x)} = \frac{g_1 x^{n-1} + g_2 x^{n-2} + g_3 x^{n-3} + \dots + g_n}{x^n + k_1 x^{n-1} + k_2 x^{n-2} + \dots + k_n}$$

If a, b, c, etc. are the roots of the equation F(x) = 0, so that

$$F(x) = (x-a)^p (x-b)^q (x-c)^r \cdots$$

where the numerators of the separate fractions are constants.

If a, b, c, etc. are single roots, then $p = q = r = \cdots = 1$, and

$$\frac{f(x)}{F(x)} = \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c} \cdots$$

$$A = \frac{f(a)}{F'(a)}, \quad B = \frac{f(b)}{F'(b)}, \text{ etc.}$$

where

The simpler fractions, into which the original fraction is thus divided, may be integrated by means of the following formulas:

71.
$$\int \frac{h \, dx}{(mx+n)^l} = \int \frac{h \, d(mx+n)}{m \, (mx+n)^l} = \frac{h}{m \, (1-l)(mx+n)^{l-1}} \cdot$$
72.
$$\int \frac{h \, dx}{mx+n} = \frac{h}{m} \log \, (mx+n).$$

If any of the roots of the equation f(x) = 0 are imaginary, the parts of the integral which arise from conjugate roots can be combined, and the integral thus brought into a real form. The following formula, in which $i = \sqrt{-1}$, is often useful in combining logarithms of conjugate complex quantities:

73.
$$\log(x \pm yi) = \frac{1}{2} \log(x^2 + y^2) \pm i \tan^{-1} \frac{y}{x}$$
.

II. IRRATIONAL ALGEBRAIC FUNCTIONS

A. EXPRESSIONS INVOLVING $\sqrt{a+bx}$

The substitution of a new variable of integration, $y = \sqrt{a + bx}$, gives

$$\begin{aligned} \mathbf{74.} & \int \sqrt{a+bx} \, dx = \frac{2}{3b} \sqrt{(a+bx)^8}. \\ \mathbf{75.} & \int x \sqrt{a+bx} \, dx = -\frac{2(2a-3bx)\sqrt{(a+bx)^8}}{15b^3}. \\ \mathbf{76.} & \int x^3 \sqrt{a+bx} \, dx = \frac{2(8a^3-12abx+15b^3x^3)\sqrt{(a+bx)^8}}{105b^8}. \\ \mathbf{76.} & \int x^3 \sqrt{a+bx} \, dx = 2\sqrt{a+bx} + a \int \frac{dx}{x\sqrt{a+bx}}. \\ \mathbf{77.} & \int \frac{\sqrt{a+bx}}{x} \, dx = 2\sqrt{a+bx} + a \int \frac{dx}{x\sqrt{a+bx}}. \\ \mathbf{78.} & \int \frac{dx}{\sqrt{a+bx}} = \frac{2\sqrt{a+bx}}{b}. \\ \mathbf{78.} & \int \frac{dx}{\sqrt{a+bx}} = -\frac{2(2a-bx)}{3b^2}\sqrt{a+bx}. \\ \mathbf{79.} & \int \frac{x\,dx}{\sqrt{a+bx}} = -\frac{2(2a-bx)}{3b^2}\sqrt{a+bx}. \\ \mathbf{80.} & \int \frac{x^2dx}{\sqrt{a+bx}} = \frac{2(8a^3-4abx+3b^3x^4)}{15b^8}\sqrt{a+bx}. \\ \mathbf{81.} & \int \frac{dx}{x\sqrt{a+bx}} = \frac{1}{\sqrt{a}}\log\left(\frac{\sqrt{a+bx}-\sqrt{a}}{\sqrt{a+bx}+\sqrt{a}}\right). \\ \mathbf{82.} & \int \frac{dx}{x\sqrt{a+bx}} = \frac{-2}{\sqrt{a}}\tanh^{-1}\sqrt{\frac{a+bx}{a}}. \\ \mathbf{83.} & \int \frac{dx}{x^3\sqrt{a+bx}} = -\frac{\sqrt{a+bx}}{ax} - \frac{b}{2a}\int \frac{dx}{x\sqrt{a+bx}}. \\ \mathbf{84.} & \int (a+bx)^{\frac{a}{3}}dx = \frac{2}{b}\int y^{1+a}dy = \frac{2(a+bx)^{\frac{2+a}{3}}}{b(2+n)}. \end{aligned}$$

.

Digitized by Google

. .

$$85. \int x(a+bx)^{\frac{n}{2}} dx = \frac{2}{b^3} \left[\frac{(a+bx)^{\frac{4+n}{2}}}{4+n} - \frac{a(a+bx)^{\frac{2+n}{2}}}{2+n} \right].$$

$$86. \int \frac{x^m dx}{\sqrt{a+bx}} = \frac{2x^m \sqrt{a+bx}}{(2m+1)b} - \frac{2ma}{(2m+1)b} \int \frac{x^{m-1} dx}{\sqrt{a+bx}}.$$

$$87. \int \frac{dx}{\sqrt{a+bx}} = -\frac{\sqrt{a+bx}}{(n-1)ax^{n-1}} - \frac{(2n-3)b}{(2n-2)a} \int \frac{dx}{x^{n-1}\sqrt{a+bx}}.$$

$$88. \int \frac{(a+bx)^{\frac{n}{2}} dx}{x(a+bx)^{\frac{n}{2}}} = b \int (a+bx)^{\frac{n-2}{2}} dx + a \int \frac{(a+bx)^{\frac{n-2}{2}}}{x} dx.$$

$$89. \int \frac{dx}{x(a+bx)^{\frac{n}{2}}} = \frac{1}{a} \int \frac{dx}{x(a+bx)^{\frac{n-2}{2}}} - \frac{b}{a} \int \frac{dx}{(a+bx)^{\frac{n}{2}}}.$$

$$B. EXPRESSIONS INVOLVING \sqrt{x^2 \pm a^2} AND \sqrt{a^4 - x^4}$$

$$90. \int \sqrt{x^3 \pm a^3} dx = \frac{1}{2} \left[x \sqrt{x^3 \pm a^2} \pm a^3 \log(x + \sqrt{x^2 \pm a^3}) \right].^*$$

$$91. \int \sqrt{a^2 - x^3} dx = \frac{1}{2} \left[x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \left(\frac{x}{a} \right) \right].$$

$$92. \int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \left(\frac{x}{a} \right), \text{ or } \cos^{-1} \left(\frac{x}{a} \right).$$

$$94. \int \frac{dx}{x\sqrt{a^2 \pm x^3}} = -\frac{1}{a} \log \left(\frac{a + \sqrt{a^4 \pm x^2}}{x} \right).^*$$

$$95. \int \frac{dx}{x\sqrt{a^2 \pm x^3}} = -\frac{1}{a} \log \left(\frac{a + \sqrt{a^4 \pm x^2}}{x} \right).^*$$

$$96. \int \frac{\sqrt{a^2 + x^3}}{x} dx = \sqrt{a^4 + x^2} - a \log \left(\frac{a + \sqrt{a^4 + x^2}}{x} \right) = \cosh^{-1} \left(\frac{x}{a} \right).$$

$$96. \int \frac{\sqrt{a^2 + x^3}}{x} dx = \sqrt{a^4 + x^2} - a \log \left(\frac{a + \sqrt{a^4 + x^2}}{x} \right) = \cosh^{-1} \left(\frac{x}{a} \right).$$

97. $\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \cos^{-1} \frac{a}{x}.$ **98.** $\int \frac{x \, dx}{\sqrt{a^2 \pm x^2}} = \pm \sqrt{a^2 \pm x^2}.$ **99.** $\int \frac{x \, dx}{\sqrt{x^2 - a^2}} = \sqrt{x^2 - a^2}.$ 100. $\int x \sqrt{x^2 \pm a^2} dx = \frac{1}{3} \sqrt{(x^2 \pm a^2)^8}.$ 101. $\int x \sqrt{a^2 - x^2} dx = -\frac{1}{3} \sqrt{(a^2 - x^2)^3}.$ 102. $\int \sqrt{(x^2 \pm a^2)^8} dx$ $=\frac{1}{4}\left[x\sqrt{(x^2\pm a^2)^8}\pm\frac{3\,a^2x}{2}\sqrt{x^2\pm a^2}+\frac{3\,a^4}{2}\log(x+\sqrt{x^2\pm a^2})\right].^*$ 103. $\int \sqrt{(a^2-x^2)^8} dx$ $=\frac{1}{4}\left[x\sqrt{(a^2-x^2)^8}+\frac{3a^2x}{2}\sqrt{a^2-x^2}+\frac{3a^4}{2}\sin^{-1}\frac{x}{a}\right]$ 104. $\int \frac{dx}{\sqrt{(x^2+a^2)^8}} = \frac{\pm x}{a^2 \sqrt{x^2\pm a^2}}.$ 105. $\int \frac{dx}{\sqrt{(a^2 - x^2)^8}} = \frac{x}{a^2 \sqrt{a^2 - x^2}}$ 106. $\int \frac{x \, dx}{\sqrt{(x^2 + a^2)^8}} = \frac{-1}{\sqrt{x^2 + a^2}}$ 107. $\int \frac{x \, dx}{\sqrt{(a^2 - x^2)^8}} = \frac{1}{\sqrt{a^2 - x^2}}.$ 108. $\int x \sqrt{(x^2 \pm a^2)^8} dx = \frac{1}{5} \sqrt{(x^2 \pm a^2)^6}.$ 109. $\int x \sqrt{(a^2 - x^2)^8} dx = -\frac{1}{6} \sqrt{(a^2 - x^2)^6}.$ * See note on page 12

13

110.
$$\int x^2 \sqrt{x^2 \pm a^2} dx$$

$$= \frac{x}{4} \sqrt{(x^2 \pm a^2)^8} \mp \frac{a^2}{8} x \sqrt{x^2 \pm a^2} - \frac{a^4}{8} \log(x + \sqrt{x^2 \pm a^2}) \cdot *$$

111.
$$\int x^2 \sqrt{a^2 - x^2} dx$$

$$= -\frac{x}{4} \sqrt{(a^2 - x^2)^8} + \frac{a^3}{8} \left(x \sqrt{a^2 - x^3} + a^3 \sin^{-1} \frac{x}{a} \right) \cdot$$

112.
$$\int \frac{x^2 dx}{\sqrt{x^2 \pm a^2}} = \frac{x}{2} \sqrt{x^2 \pm a^2} \mp \frac{a^2}{2} \log(x + \sqrt{x^2 \pm a^2}) \cdot *$$

113.
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^3} + \frac{a^3}{2} \sin^{-1} \frac{x}{a} \cdot$$

114.
$$\int \frac{dx}{x^2 \sqrt{a^2 - x^2}} = -\frac{\sqrt{a^2 - x^3}}{a^2 x} \cdot$$

115.
$$\int \frac{dx}{x^2 \sqrt{a^2 - x^2}} = -\frac{\sqrt{a^3 - x^2}}{a^3 x} \cdot$$

116.
$$\int \frac{\sqrt{x^2 \pm a^2} dx}{x^2} = -\frac{\sqrt{x^3 \pm a^2}}{x} + \log(x + \sqrt{x^3 \pm a^2}) \cdot *$$

117.
$$\int \frac{\sqrt{a^2 - x^3}}{x^2} dx = -\frac{\sqrt{a^2 - x^2}}{x} - \sin^{-1} \frac{x}{a} \cdot$$

118.
$$\int \frac{x^2 dx}{\sqrt{(x^2 \pm a^2)^8}} = \frac{-x}{\sqrt{x^3 \pm a^2}} + \log(x + \sqrt{x^3 \pm a^2}) \cdot *$$

119.
$$\int \frac{x^3 dx}{\sqrt{(a^2 - x^2)^8}} = \frac{x}{\sqrt{a^2 - x^2}} - \sin^{-1} \frac{x}{a} \cdot$$

C. EXPRESSIONS INVOLVING $\sqrt{a + bx + cx^2}$

Let $X = a + bx + cx^2$, $q = 4 ac - b^2$, and $k = \frac{4 c}{q}$. In order to rationalize the function $f(x, \sqrt{a + bx + cx^2})$ we may put $\sqrt{a + bx + cx^2} = \sqrt{\pm c} \sqrt{A + Bx \pm x^2}$, according as c is positive or negative, and then substitute for x a new variable z, such that

* See note on page 12

Digitized by Google

IRRATIONAL ALGEBRAIC FUNCTIONS

$$z = \sqrt{A + Bx + x^2} - x, \text{ if } c > 0;$$

$$z = \frac{\sqrt{A + Bx - x^2} - \sqrt{A}}{x}, \text{ if } c < 0 \text{ and } \frac{a}{-c} > 0;$$

$$z = \sqrt{\frac{x - \beta}{a - x}}, \text{ where } a \text{ and } \beta \text{ are the roots of the equation}$$

$$A + Bx - x^2 = 0, \text{ if } c < 0 \text{ and } \frac{a}{-c} < 0.$$

By rationalization, or by the aid of reduction formulas, may be obtained the values of the following integrals:

120.
$$\int \frac{dx}{\sqrt{X}} = \frac{1}{\sqrt{c}} \log \left(\sqrt{X} + x \sqrt{c} + \frac{b}{2\sqrt{c}} \right),$$

$$\frac{1}{\sqrt{c}} \sinh^{-1} \left(\frac{2 cx + b}{\sqrt{4 ac - b^2}} \right), \text{ if } c > 0.$$

121.
$$\int \frac{dx}{\sqrt{c}} = \frac{1}{\sqrt{c}} \sin^{-1} \left(\frac{-2 cx - b}{\sqrt{4 ac - b^2}} \right), \text{ if } c < 0$$

121.
$$\int \frac{dx}{\sqrt{X}} = \frac{1}{\sqrt{-c}} \sin^{-1} \left(\frac{-2 cx - b}{\sqrt{b^2 - 4 ac}} \right)$$
, if $c < 0$.

$$122. \int \frac{dx}{X\sqrt{X}} = \frac{2(2\ cx+b)}{q\sqrt{X}}.$$

$$123. \int \frac{dx}{X^2\sqrt{X}} = \frac{2(2\ cx+b)}{3\ q\sqrt{X}} \left(\frac{1}{X}+2\ k\right).$$

$$124. \int \frac{dx}{X^n\sqrt{X}} = \frac{2(2\ cx+b)\sqrt{X}}{(2\ n-1)\ qX^n} + \frac{2\ k\ (n-1)}{2\ n-1} \int \frac{dx}{X^{n-1}\sqrt{X}}.$$

$$125. \int \sqrt{X}\ dx = \frac{(2\ cx+b)\sqrt{X}}{4\ c} + \frac{1}{2\ k} \int \frac{dx}{\sqrt{X}}.$$

$$126. \int X\sqrt{X}\ dx = \frac{(2\ cx+b)\sqrt{X}}{8\ c} \left(X+\frac{3}{2\ k}\right) + \frac{3}{8\ k^2} \int \frac{dx}{\sqrt{X}}.$$

$$127. \int X^2\sqrt{X}\ dx = \frac{(2\ cx+b)\sqrt{X}}{12\ c} \left(X^2+\frac{5\ X}{4\ k}+\frac{15}{8\ k^2}\right) + \frac{5}{16\ k^3} \int \frac{dx}{\sqrt{X}}.$$

$$128. \int X^n\sqrt{X}\ dx = \frac{(2\ cx+b)X^n\sqrt{X}}{4(n+1)\ c} + \frac{2\ n+1}{2(n+1)\ k} \int \frac{X^n\ dx}{\sqrt{X}}.$$

$$129. \int \frac{x\ dx}{\sqrt{X}} = \frac{\sqrt{X}}{c} - \frac{b}{2\ c} \int \frac{dx}{\sqrt{X}}.$$

BARLE ILSO - 100 The second and the second 3 A John Se-Langerty I INTER THE SECOND The farvis - info $III = \int d^{2} \sqrt{2} \, dx = \left(x - \frac{50}{6c}\right) \frac{1}{4c} \sqrt{2}$ $100 \int \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} = \frac{1}{2(n+1)e} - \frac{(2)}{4}$ $-\frac{a}{2(a+1)c}\int \frac{T^{*}dx}{\sqrt{X}}.$ $141 \int dx = \left(x^2 - \frac{7hx}{8e}\right)$ + (3 00 - 7 02 0)) Digitized by Google

IRRATIONAL ALGEBRAIC FUNCTIONS

142.
$$\int \frac{dx}{x\sqrt{x}} = -\frac{1}{\sqrt{a}} \log\left(\frac{\sqrt{x}}{x} + \sqrt{a}}{x} + \frac{b}{2\sqrt{a}}\right), \text{ if } a > 0.$$

143.
$$\int \frac{dx}{x\sqrt{x}} = \frac{1}{\sqrt{-a}} \sin^{-1}\left(\frac{bx+2a}{x\sqrt{b^{2}-4ac}}\right), \text{ if } a < 0.$$

144.
$$\int \frac{dx}{x\sqrt{x}} = -\frac{2\sqrt{x}}{bx}, \text{ if } a = 0.$$

145.
$$\int \frac{dx}{x\sqrt{x}} = -\frac{\sqrt{x}}{(2n-1)ax^{n}} + \frac{1}{a} \int \frac{dx}{xx^{n-1}\sqrt{x}} - \frac{b}{2a} \int \frac{dx}{\sqrt{x}},$$

146.
$$\int \frac{dx}{x^{2}\sqrt{x}} = -\frac{\sqrt{x}}{ax} - \frac{b}{2a} \int \frac{dx}{\sqrt{x}}.$$

147.
$$\int \frac{\sqrt{x}dx}{x} = \sqrt{x} + \frac{b}{2} \int \frac{dx}{\sqrt{x}} + a \int \frac{dx}{x\sqrt{x}}.$$

148.
$$\int \frac{X^{n}dx}{x\sqrt{x}} = \frac{x^{n}}{(2n-1)\sqrt{x}} + a \int \frac{X^{n-1}dx}{x\sqrt{x}} + \frac{b}{2} \int \frac{X^{n-1}dx}{\sqrt{x}}.$$

149.
$$\int \frac{\sqrt{x}dx}{x^{3}\sqrt{x}} = -\frac{\sqrt{x}}{x} + \frac{b}{2} \int \frac{dx}{x\sqrt{x}} + c \int \frac{dx}{\sqrt{x}}.$$

150.
$$\int \frac{x^{m}dx}{x^{n}\sqrt{x}} = \frac{1}{c} \int \frac{x^{n-2}dx}{x^{n-1}\sqrt{x}} - \frac{b}{c} \int \frac{x^{n-1}dx}{\sqrt{x}\sqrt{x}} - \frac{a}{c} \int \frac{x^{n-2}dx}{\sqrt{x}\sqrt{x}}.$$

151.
$$\int \frac{c^{m}x^{n}dx}{\sqrt{x}} = \frac{x^{n-1}X^{n}\sqrt{x}}{(2n+m)c} - \frac{(2n+2m-1)b}{2c(2n+m)} \int \frac{x^{n-1}dx}{\sqrt{x}}.$$

152.
$$\int \frac{dx}{x^{m}x^{n}\sqrt{x}} = -\frac{\sqrt{x}}{(m-1)a} \int \frac{dx}{\sqrt{x}^{m-1}x^{n}\sqrt{x}}.$$

$$\int \frac{(2n+2m-3)b}{2a(m-1)} \int \frac{dx}{x^{m-1}x^{n}\sqrt{x}}.$$

$$\int \frac{(2n+2m-3)b}{2a(m-1)} \int \frac{dx}{x^{m-1}x^{n}\sqrt{x}}.$$

$$\int \frac{(2n+2m-2)c}{(m-1)a} \int \frac{dx}{x^{m-1}x^{n}\sqrt{x}}.$$

$$\int \frac{dx}{dx} = \int \frac{dx}{dx}$$

130. $\int \frac{x \, dx}{x \, \sqrt{x}} = -\frac{2 \left(bx + 2 \, a\right)}{a \sqrt{X}}$ 131. $\int \frac{x \, dx}{x^n \sqrt{x}} = -\frac{\sqrt{x}}{(2n-1)cx^n} - \frac{b}{2c} \int \frac{dx}{x^n \sqrt{x}}$ 132. $\int \frac{x^2 dx}{\sqrt{x}} = \left(\frac{x}{2c} - \frac{3b}{4c^2}\right) \sqrt{x} + \frac{3b^2 - 4ac}{8c^2} \int \frac{dx}{\sqrt{x}}$ 133. $\int \frac{x^2 dx}{x \sqrt{x}} = \frac{(2b^2 - 4ac)x + 2ab}{ca\sqrt{x}} + \frac{1}{c} \int \frac{dx}{\sqrt{x}}.$ 134. $\int \frac{x^2 dx}{x^n \sqrt{x}} = \frac{(2b^2 - 4ac)x + 2ab}{(2n-1)cq} + \frac{4ac + (2n-3)b^2}{(2n-1)cq} \int \frac{dx}{x^{n-1}\sqrt{x}}$ 135. $\int \frac{x^8 dx}{\sqrt{x}} = \left(\frac{x^9}{3c} - \frac{5bx}{12c^2} + \frac{5b^3}{8c^8} - \frac{2a}{3c^2}\right)\sqrt{x} + \left(\frac{3ab}{4c^2} - \frac{5b^8}{16c^8}\right)\int \frac{dx}{\sqrt{x}}$ 136. $\int x \sqrt{X} dx = \frac{X \sqrt{X}}{3c} - \frac{b}{2c} \int \sqrt{X} dx.$ 137. $\int x X \sqrt{X} dx = \frac{X^2 \sqrt{X}}{5c} - \frac{b}{2c} \int X \sqrt{X} dx.$ 138. $\int \frac{xX^n dx}{\sqrt{X}} = \frac{X^n \sqrt{X}}{(2n+1)c} - \frac{b}{2c} \int \frac{X^n dx}{\sqrt{X}}$ 139. $\int x^2 \sqrt{X} dx = \left(x - \frac{5b}{6c}\right) \frac{X\sqrt{X}}{4c} + \frac{5b^2 - 4ac}{16c^2} \int \sqrt{X} dx.$ 140. $\int \frac{x^2 X^n dx}{\sqrt{X}} = \frac{x X^n \sqrt{X}}{2(n+1)c} - \frac{(2n+3)b}{4(n+1)c} \int \frac{x X^n dx}{\sqrt{X}}$ $-\frac{a}{2(n+1)c}\int \frac{X^n dx}{\sqrt{X}}$ 141. $\int x^3 \sqrt{X} \, dx = \left(x^2 - \frac{7 \, bx}{8 \, c} + \frac{35 \, b^2}{48 \, c^2} - \frac{2 \, a}{3 \, c}\right) \frac{X \, \sqrt{X}}{5 \, c}$ $+\left(\frac{3\,ab}{8\,c^2}-\frac{7\,b^3}{32\,c^3}\right)\int\sqrt{X}\,dx.$

16

IRRATIONAL ALGEBRAIC FUNCTIONS 17

$$\begin{aligned}
& \mathbf{142.} \int \frac{dx}{x \sqrt{X}} = -\frac{1}{\sqrt{a}} \log\left(\frac{\sqrt{X} + \sqrt{a}}{x} + \frac{b}{2\sqrt{a}}\right), \text{ if } a > 0. \\
& \mathbf{143.} \int \frac{dx}{x \sqrt{X}} = \frac{1}{\sqrt{-a}} \sin^{-1}\left(\frac{bx + 2a}{x\sqrt{b^2 - 4ac}}\right), \text{ if } a < 0. \\
& \mathbf{143.} \int \frac{dx}{x \sqrt{X}} = -\frac{2\sqrt{X}}{\sqrt{x}}, \text{ if } a = 0. \\
& \mathbf{144.} \int \frac{dx}{x\sqrt{X}} = -\frac{2\sqrt{X}}{bx}, \text{ if } a = 0. \\
& \mathbf{145.} \int \frac{dx}{x\sqrt{X} - \sqrt{X}} = \frac{\sqrt{X}}{(2n-1)aX^n} + \frac{1}{a} \int \frac{dx}{xX^{n-1}\sqrt{X}} - \frac{b}{2a} \int \frac{dx}{\sqrt{x}\sqrt{X}}. \\
& \mathbf{146.} \int \frac{dx}{x^4\sqrt{X}} = -\frac{\sqrt{X}}{ax} - \frac{b}{2a} \int \frac{dx}{x\sqrt{X}}. \\
& \mathbf{147.} \int \frac{\sqrt{X}dx}{x} = \sqrt{X} + \frac{b}{2} \int \frac{dx}{\sqrt{X}} + a \int \frac{dx}{x\sqrt{X}}. \\
& \mathbf{148.} \int \frac{X^n dx}{x} = \sqrt{X} + \frac{b}{2} \int \frac{dx}{\sqrt{X}} + a \int \frac{dx}{x\sqrt{X}}. \\
& \mathbf{148.} \int \frac{X^n dx}{x\sqrt{X}} = \frac{x^n}{(2n-1)\sqrt{X}} + a \int \frac{X^{n-1}dx}{x\sqrt{X}} + \frac{b}{2} \int \frac{X^{n-1}dx}{\sqrt{X}}. \\
& \mathbf{149.} \int \frac{\sqrt{X}dx}{x^2} = -\frac{\sqrt{X}}{x} + \frac{b}{2} \int \frac{dx}{x\sqrt{X}} + c \int \frac{dx}{\sqrt{X}}. \\
& \mathbf{150.} \int \frac{x^n dx}{x^2} = \frac{1}{c} \int \frac{x^{n-2}dx}{X^{n-1}\sqrt{X}} - \frac{b}{c} \int \frac{x^{n-1}dx}{\sqrt{x}\sqrt{X}} - \frac{a}{c} \int \frac{x^{n-3}dx}{\sqrt{x}\sqrt{X}}. \\
& \mathbf{151.} \int \frac{x^n dx}{\sqrt{X}} = \frac{x^{n-1}X^n\sqrt{X}}{(2n+m)c} - \frac{(2n+2m-1)b}{\sqrt{X}} \int \frac{x^{n-1}a^n dx}{\sqrt{X}} \\
& - \frac{(m-1)a}{(2n+m)c} \int \frac{x^{m-3}x^n dx}{\sqrt{X}}. \\
& - \frac{(2n+2m-3)b}{2a(m-1)} \int \frac{dx}{x^{m-1}X^n\sqrt{X}}. \\
& - \frac{(2n+2m-3)c}{(m-1)a} \int \frac{dx}{x^{m-2}X^n\sqrt{X}}. \\
& \mathbf{151.} \int \frac{x^n dx}{(m-1)a} \int \frac{dx}{x^{m-1}x^n\sqrt{X}} \\
& - \frac{(2n+2m-3)c}{(m-1)a} \int \frac{dx}{x^{m-2}X^n\sqrt{X}}. \\
& \mathbf{152.} \int \frac{dx}{(2n+m)c} \int \frac{dx}{(m-1)a} \int \frac{dx}{x^{m-3}X^n} \sqrt{X}. \\
& \mathbf{152.} \int \frac{dx}{(2n+m)c} \int \frac{dx}{(m-1)a} \int \frac{dx}{x^{m-2}X^n\sqrt{X}}. \\
& \mathbf{152.} \int \frac{dx}{(2n+m)c} \int \frac{dx}{(m-1)a} \int \frac{dx}{x^{m-2}X^n\sqrt{X}}. \\
& \mathbf{152.} \int \frac{dx}{(2n+m)c} \int \frac{dx}{(m-1)a} \int \frac{dx}{x^{m-2}X^n\sqrt{X}}. \\
& \mathbf{152.} \int \frac{dx}{(2n+m)c} \int \frac{dx}{(m-1)a} \int \frac{dx}{x^{m-2}X^n\sqrt{X}}. \\
& \mathbf{152.} \int \frac{dx}{(2n+m)c} \int \frac{dx}{(2n+m)c} \int \frac{dx}{(2n+1)} \int \frac{dx}{(2n$$

1

IRRATIONAL ALGEBRAIC FUNCTIONS

$$153. \int \frac{X^{n} dx}{x^{m} \sqrt{X}} = -\frac{X^{n-1} \sqrt{X}}{(m-1)x^{m-1}} + \frac{(2n-1)b}{2(m-1)} \int \frac{X^{n-1} dx}{x^{m-1} \sqrt{X}} + \frac{(2n-1)c}{m-1} \int \frac{X^{n-1} dx}{X^{m-2} \sqrt{X}}.$$

154.
$$\int \frac{dx}{(a'+b'x)\sqrt{X}} = \frac{1}{\sqrt{-h}} \tan^{-1} \frac{2h + m(a'+b'x)}{2b'\sqrt{-hX}},$$

or
$$\frac{1}{\sqrt{h}} \log \frac{2h + m(a'+b'x) - 2b'\sqrt{hX}}{a'+b'x},$$

where m = bb' - 2 a'c and $h = ab'^2 - a'bb' + ca'^2$. If h = 0, the value of the integral is $-2 b' \sqrt{X} / [m(a'+b'x)]$.

D. MISCELLANEOUS ALGEBRAIC EXPRESSIONS

$$155. \int \sqrt{2 \, ax - x^2} \, dx = \frac{1}{2} [(x - a)\sqrt{2 \, ax - x^2} + a^2 \sin^{-1}(x - a)/a].$$

$$156. \int \frac{dx}{\sqrt{2 \, ax - x^2}} = \cos^{-1} \left(\frac{a - x}{a}\right).$$

$$157. \int \frac{dx}{\sqrt{a + bx} \cdot \sqrt{a' + b'x}} = \frac{2}{\sqrt{-bb'}} \tan^{-1} \sqrt{\frac{-b'(a + bx)}{b(a' + b'x)}},$$
or
$$\frac{2}{\sqrt{bb'}} \tanh^{-1} \sqrt{\frac{b'(a + bx)}{b(a' + b'x)}}.$$

158.
$$\int \sqrt{(a+bx)(a'+b'x)} \, dx = \frac{k+2b\sqrt{a'+b'x}}{4bb'} \sqrt{(a+bx)(a'+b'x)} - \frac{k^3}{8bb'} \int \frac{dx}{\sqrt{a+bx} \cdot \sqrt{a'+b'x}}, \quad [k=ab'-a'b].$$

$$159. \int \sqrt{\frac{a'+b'x}{a+bx}} dx = \frac{\sqrt{a+bx} \cdot \sqrt{a'+b'x}}{b} - \frac{k}{2b} \int \frac{dx}{\sqrt{a+bx}\sqrt{a'+b'x}}.$$

160.
$$\int \sqrt{\frac{1+x}{1-x}} dx = \sin^{-1}x - \sqrt{1-x^2}.$$

161.
$$\int \sqrt{\frac{x+a}{x+b}} dx = \sqrt{(x+a)(x+b)} + (a-b) \log (\sqrt{x+a} + \sqrt{x+b}).$$

162.
$$\int \frac{dx}{\sqrt{(x-a)(a'-x)}} = 2\sin^{-1}\sqrt{\frac{x-a}{a'-a}}$$

163.
$$\int \frac{(px+q)dx}{(x-a')(x-b')\sqrt{a+bx+cx^2}} = \frac{q+a'p}{a'-b'} \int \frac{dx}{(x-a')\sqrt{a+bx+cx^2}} -\frac{q+b'p}{a'-b'} \int \frac{dx}{(x-b')\sqrt{a+bx+cx^2}}.$$

or

$$\frac{1}{\sqrt{-h}} \cdot \tan^{-1}\left(\frac{2h+m(a'+b'x)}{2b'\sqrt{-h(a+bx+cx^2)}}\right),$$

m = bb' - 2 a'c and $h = ab'^2 - a'bb' + ca'^2$. where

165.
$$\int f\left\{x, \sqrt[n]{\frac{a+bx}{a'+b'x}}\right\} dx$$
$$= n(a'b-ab') \int f\left\{\frac{a-a'z^n}{b'z^n-b}, z\right\} \cdot \frac{z^{n-1}dz}{(b'z^n-b)^2},$$
where $z^n(a'+b'x) = a+bx.$

where

166.
$$\int f(x, \sqrt{a + bx + cx^2}) dx$$
$$= 2 \int f\left(\frac{2\sqrt{a} \cdot z - b}{1 - z^2}, \frac{z^2\sqrt{a} - bz + \sqrt{a}}{1 - z^2}\right) \cdot \frac{z^2\sqrt{a} - bz + \sqrt{a}}{(1 - z^2)^2} dz,$$

where

$$xz + \sqrt{a} = \sqrt{a + bx + cx^2}.$$

 $\frac{1}{4} \frac{y}{y} = \frac{d_{1}}{d_{2}} \left(\frac{x}{x} \right)$ $\frac{1}{4} \frac{y}{y} = \frac{d_{2}}{d_{2}} \left(\frac{x}{x} \right)$ $\frac{1}{4} \frac{y}{y} = \frac{d_{2}}{d_{2}} \left(\frac{x}{x} \right)$ $\frac{d_{1}}{d_{2}} \frac{d_{2}}{d_{2}} \left(\frac{x}{x} \right)$ $\frac{d_{1}}{d_{2}} \frac{d_{2}}{d_{2}} \left(\frac{x}{x} \right)$ $\frac{d_{1}}{d_{2}} \frac{d_{2}}{d_{2}} \left(\frac{x}{x} \right)$ Digitized by Google

111. TRANSCENDENTAL FUNCTIONS
167.
$$\int \sin x \, dx = -\cos x$$
.
168. $\int \sin^2 x \, dx = -\frac{1}{2} \cos x \sin x + \frac{1}{2}x = \frac{1}{2}x - \frac{1}{4} \sin 2x$.
169. $\int \sin^a x \, dx = -\frac{1}{6} \cos x (\sin^2 x + 2)$.
170. $\int \sin^a x \, dx = -\frac{\sin^{a-1}x \cos x}{n} + \frac{n-1}{n} \int \sin^{a-2} x \, dx$.
171. $\int \cos x \, dx = -\frac{1}{2} \sin x \cos x + \frac{1}{2}x = \frac{1}{2}x + \frac{1}{4} \sin 2x$.
172. $\int \cos^3 x \, dx = \frac{1}{2} \sin x \cos x + \frac{1}{2}x = \frac{1}{2}x + \frac{1}{4} \sin 2x$.
173. $\int \cos^3 x \, dx = \frac{1}{4} \sin x (\cos^2 x + 2)$.
174. $\int \cos^a x \, dx = \frac{1}{n} \cos^{a-1}x \sin x + \frac{n-1}{n} \int \cos^{a-2}x \, dx$.
175. $\int \sin x \cos^a x \, dx = \frac{1}{2} \sin^2 x$.
176. $\int \sin^2 x \cos^2 x \, dx = -\frac{1}{8} (\frac{1}{4} \sin 4x - x)$.
177. $\int \sin x \cos^m x \, dx = -\frac{\cos^{m+1}x}{m+1}$.
178. $\int \sin^m x \cos x \, dx = \frac{\sin^{m+1}x}{m+1}$.
179. $\int \cos^m x \sin^n x \, dx = \frac{\cos^{m-1}x \sin^{n+1}x}{m+n} + \frac{m-1}{m+n} \int \cos^{m-2}x \sin^n x \, dx$.
180. $\int \cos^m x \sin^n x \, dx = -\frac{\sin^{n-1}x \cos^{m+1}x}{m+n} + \frac{m-1}{m+n} \int \cos^m x \sin^{n-2}x \, dx$.
181. $\int \frac{\cos^m x \, dx}{\sin^n x} = -\frac{\cos^{m+1}x}{(n-1)\sin^{n-1}x} - \frac{m-n+2}{n-1} \int \frac{\cos^m x \, dx}{\sin^{n-2}x}$.

20

$$182. \int \frac{\cos^{m} x \, dx}{\sin^{n} x} = \frac{\cos^{m-1} x}{(m-n)\sin^{n-1} x} + \frac{m-1}{m-n} \int \frac{\cos^{m-2} x \, dx}{\sin^{n} x} \cdot \\ 183. \int \frac{\sin^{m} x \, dx}{\cos^{n} x} = -\int \frac{\cos^{m} \left(\frac{\pi}{2} - x\right) d\left(\frac{\pi}{2} - x\right)}{\sin^{n} \left(\frac{\pi}{2} - x\right)} \cdot \\ 184. \int \frac{dx}{\sin^{m} x \cos^{n} x} \\ = \frac{1}{n-1} \cdot \frac{1}{\sin^{m-1} x \cdot \cos^{n-1} x} + \frac{m+n-2}{n-1} \int \frac{dx}{\sin^{m} x \cdot \cos^{n-2} x} \\ = -\frac{1}{m-1} \cdot \frac{1}{\sin^{m-1} x \cdot \cos^{n-1} x} + \frac{m+n-2}{m-1} \int \frac{dx}{\sin^{m-2} x \cdot \cos^{n} x} \cdot \\ \int \frac{dx}{\sin x \cos x} = \log \tan x. \\ 185. \int \frac{dx}{\sin^{n} x} = -\frac{1}{m-1} \cdot \frac{\cos x}{\sin^{m-1} x} + \frac{m-2}{m-1} \int \frac{dx}{\sin^{m-2} x} \cdot \\ 186. \int \frac{dx}{\cos^{n} x} = \frac{1}{n-1} \cdot \frac{\sin x}{\cos^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\cos^{n-2} x} \cdot \\ 187. \int \tan x \, dx = -\log \cos x. \\ 188. \int \tan^{n} x \, dx = \tan x - x. \\ 189. \int \tan^{n} x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx. \\ 190. \int \operatorname{ctn} x \, dx = \log \sin x. \\ 191. \int \operatorname{ctn}^{n} x \, dx = -\frac{\operatorname{ctn}^{n-1} x}{n-1} - \int \operatorname{ctn}^{n-2} x \, dx. \\ 193. \int \sec x \, dx = \log \tan \left(\frac{\pi}{4} + \frac{x}{2}\right) \cdot \quad A \to X \to X$$

.

21

· Digitized by Google

.

$$195. \int \sec^{n} x \, dx = \int \frac{dx}{\cos^{n} x}.$$

$$196. \int \csc x \, dx = \log \tan \frac{1}{2} x.$$

$$197. \int \csc^{2} x \, dx = - \operatorname{ctn} x.$$

$$198. \int \csc^{n} x \, dx = \int \frac{dx}{\sin^{n} x}.$$

$$199. \int \frac{dx}{a + b \cos x} = \frac{-1}{\sqrt{a^{2} - b^{2}}} \cdot \sin^{-1} \left[\frac{b + a \cos x}{a + b \cos x} \right], [a > b > 0],$$
or
$$\frac{1}{\sqrt{a^{2} - b^{2}}} \cdot \sin^{-1} \left[\frac{\sqrt{a^{2} - b^{2}} \cdot \sin x}{a + b \cos x} \right], [a > b > 0],$$
or
$$\frac{1}{\sqrt{a^{2} - b^{2}}} \cdot \tan^{-1} \left[\frac{\sqrt{a^{2} - b^{2}} \cdot \sin x}{b + a \cos x} \right], [a > b > 0],$$
or
$$\frac{1}{\sqrt{b^{2} - a^{2}}} \log \left[\frac{b + a \cos x + \sqrt{b^{2} - a^{2}} \cdot \sin x}{a + b \cos x} \right], [a > 0, b^{2} > a^{2}].$$

$$200. \int \frac{dx}{a + b \cos x + c \sin x}$$

$$= \frac{-1}{\sqrt{a^{2} - b^{2} - c^{2}}} \cdot \sin^{-1} \left[\frac{b^{2} + c^{2} + a(b \cos x + c \sin x)}{\sqrt{b^{2} + c^{2} - a^{2}}} \cdot \log \right]$$
or
$$\frac{1}{\sqrt{b^{2} + c^{2} - a^{2}}} \cdot \log \left[\frac{b^{2} + c^{2} + a(b \cos x + c \sin x)}{\sqrt{b^{2} + c^{2} - a^{2}}} \cdot \log \left[\frac{b^{2} + c^{2} + a(b \cos x + c \sin x)}{\sqrt{b^{2} + c^{2} - a^{2}}} \cdot \log \left[\frac{b^{2} + c^{2} + a(b \cos x + c \sin x)}{\sqrt{b^{2} + c^{2} - a^{2}}} \cdot \log \left[\frac{b^{2} + c^{2} + a(b \cos x + c \sin x)}{\sqrt{b^{2} + c^{2} - a^{2}}} \cdot \log \left[\frac{b^{2} + c^{2} + a(b \cos x + c \sin x)}{\sqrt{b^{2} + c^{2} - a^{2}}} \cdot \log \left[\frac{b^{2} + c^{2} + a(b \cos x + c \sin x) + \sqrt{b^{2} + c^{2} - a^{2}}}{\sqrt{b^{2} + c^{2} + a^{2}}} \frac{1}{a^{2} + b \cos x + c \sin x} \right] \right].$$
201. $\int x \sin x \, dx = \sin x - x \cos x.$
202. $\int x^{2} \sin x \, dx = 2x \sin x - (x^{2} - 2) \cos x.$
203. $\int x^{2} \sin x \, dx = (3 x^{2} - 6) \sin x - (x^{2} - 6x) \cos x.$

 $\mathbf{22}$

205.
$$\int x \cos x \, dx = \cos x + x \sin x.$$

206.
$$\int x^{3} \cos x \, dx = 2 x \cos x + (x^{3} - 2) \sin x.$$

207.
$$\int x^{8} \cos x \, dx = (3 x^{3} - 6) \cos x + (x^{8} - 6 x) \sin x.$$

208.
$$\int x^{m} \cos x \, dx = x^{m} \sin x - m \int x^{m-1} \sin x \, dx.$$

209.
$$\int \frac{\sin x}{x^{m}} \, dx = -\frac{1}{m-1} \cdot \frac{\sin x}{x^{m-1}} + \frac{1}{m-1} \int \frac{\cos x}{x^{m-1}} \, dx.$$

210.
$$\int \frac{\cos x}{x^{m}} \, dx = -\frac{1}{m-1} \cdot \frac{\cos x}{x^{m-1}} - \frac{1}{m-1} \int \frac{\sin x}{x^{m-1}} \, dx.$$

211.
$$\int \frac{\sin x}{x} \, dx = x - \frac{x^{8}}{3 \cdot 3!} + \frac{x^{5}}{5 \cdot 5!} - \frac{x^{7}}{7 \cdot 7!} + \frac{x^{9}}{9 \cdot 9!} \cdots.$$

212.
$$\int \frac{\cos x}{x} \, dx = \log x - \frac{x^{2}}{2 \cdot 2!} + \frac{x^{4}}{4 \cdot 4!} - \frac{x^{6}}{6 \cdot 6!} + \frac{x^{8}}{8 \cdot 8!} \cdots.$$

213.
$$\int \sin (mx + a) \cdot \sin (nx + b) \, dx$$

$$= \frac{\sin (mx - nx + a - b)}{2 (m - n)} - \frac{\sin (mx + nx + a + b)}{2 (m + n)}.$$

214.
$$\int \cos (mx + a) \cdot \cos (nx + b) \, dx$$

$$= \frac{\sin (mx + nx + a + b)}{2 (m + n)} + \frac{\sin (mx - nx + a - b)}{2 (m - n)}.$$

215.
$$\int \sin (mx + a) \cdot \cos (nx + b) \, dx$$

$$= -\frac{\cos (mx + nx + a + b)}{2 (m + n)} - \frac{\cos (mx - nx + a - b)}{2 (m - n)}.$$

216.
$$\int \sin (mx + a) \cdot \sin (mx + b) \, dx$$

$$= \frac{x}{2} \cdot \cos (b - a) - \frac{\sin (mx + a) \cdot \cos (mx + b)}{2 m}.$$

217.
$$\int \sin (mx + a) \cdot \cos (mx + b) \, dx$$

$$= \frac{\sin (mx + a) \cdot \sin (mx + b) \, dx}{2 m}.$$

217.
$$\int \sin (mx + a) \cdot \cos (mx + b) \, dx$$

$$= \frac{\sin (mx + a) \cdot \sin (mx + b)}{2 m} - \frac{x}{2} \cdot \sin (b - a).$$

218.
$$\int \cos(mx + a) \cdot \cos(mx + b) dx$$

$$= \frac{x}{2} \cdot \cos(b - a) + \frac{\sin(mx + a) \cos(mx + b)}{2m} \cdot \frac{2}{2m} \cdot \frac{2}{2m} \cdot \frac{1}{2m} \cdot$$

^

 $234. \int e^{ax} dx = \frac{e^{ax}}{a}. \qquad (C^{A})$ * **235.** $\int x e^{ax} dx = \frac{e^{ax}}{a^2} (ax - 1).$ $236. \int x^m e^{ax} dx = \frac{x^m e^{ax}}{a} - \frac{m}{a} \int x^{m-1} e^{ax} dx.$ 237. $\int \frac{e^{ax}}{x^m} dx = -\frac{1}{m-1} \frac{e^{ax}}{x^{m-1}} + \frac{a}{m-1} \int \frac{e^{ax}}{x^{m-1}} dx.$ **238.** $\int e^{ax} \log x \, dx = \frac{e^{ax} \log x}{a} - \frac{1}{a} \int \frac{e^{ax}}{x} \, dx.$ $239. \int e^{ax} \cdot \sin px \, dx = \frac{e^{ax} \left(a \sin px - p \cos px\right)}{a^2 + n^2}.$ 240. $\int e^{ax} \cdot \cos px \, dx = \frac{e^{ax} (a \cos px + p \sin px)}{a^2 + p^2}$. **241.** $\int \sinh x \, dx = \cosh x; \quad \int \cosh x \, dx = \sinh x.$ 242. $\int \tanh x \, dx = \log \cosh x$; $\int \coth x \, dx = \log \sinh x$. **243.** $\int \operatorname{sech} x \, dx = 2 \tan^{-1}(e^x).$ **244.** $\int \operatorname{csch} x \, dx = \log \tanh\left(\frac{x}{2}\right) \cdot$ 245. $\int x \sinh x \, dx = x \cosh x - \sinh x.$ 246. $\int x \cosh x \, dx = x \sinh x - \cosh x.$ **247.** $\int \cosh^2 x \, dx = \frac{1}{2} (\sinh x \cosh x + x).$ $248. \int \sinh x \cosh x \, dx = \frac{1}{4} \cosh \left(2 x\right).$ **249.** $\int \sinh^2 x \, dx = \frac{1}{2} (\sinh x \cosh x - x).$

25

IV. MISCELLANEOUS DEFINITE INTEGRALS **250.** $\int_{-\infty}^{\infty} \frac{a \, dx}{a^2 + x^2} = \frac{\pi}{2}, \text{ if } a > 0; 0, \text{ if } a = 0; -\frac{\pi}{2}, \text{ if } a < 0.$ **251.** $\int_{1}^{\infty} x^{n-1} e^{-x} dx = \int_{1}^{1} \left[\log \frac{1}{x} \right]^{n-1} dx = \Gamma(n).$ $\Gamma(n+1) = n \cdot \Gamma(n)$, if n > 0. $\Gamma(n+1) = n \cdot \Gamma(n), \text{ if } n > 0. \qquad \Gamma(2) = \Gamma(1) = 1.$ $\Gamma(n+1) = n!, \text{ if } n \text{ is an integer.} \qquad \Gamma(\frac{1}{2}) = \sqrt{\pi}.$ $Z(y) = D_{\mathbf{y}} \lceil \log \Gamma(y) \rceil.$ $\Gamma(n) = \Pi(n-1).$ Z(1) = -0.577216.252. $\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx = \int_{0}^{\infty} \frac{x^{m-1} dx}{(1+x)^{m+n}} = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}.$ **253.** $\int_{-\infty}^{\frac{\pi}{2}} \sin^n x \, dx = \int_{-\infty}^{\frac{\pi}{2}} \cos^n x \, dx$ $=\frac{1\cdot 3\cdot 5\cdots (n-1)}{2\cdot 4\cdot 6\cdots (n)}\cdot \frac{\pi}{2}, \text{ if } n \text{ is an even integer;}$ $=\frac{2\cdot 4\cdot 6\cdots (n-1)}{1\cdot 3\cdot 5\cdot 7\cdots n}, \text{ if } n \text{ is an odd integer};$ $=\frac{1}{2}\sqrt{\pi}\frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}+1\right)}$ for any value of *n* greater than -1. **254.** $\int_{1}^{\infty} \frac{\sin mx \, dx}{x} = \frac{\pi}{2}, \text{ if } m > 0; 0, \text{ if } m = 0; -\frac{\pi}{2}, \text{ if } m < 0.$ **255.** $\int_{-\infty}^{\infty} \frac{\sin x \cdot \cos mx \, dx}{x} = 0$, if m < -1 or m > 1; $\frac{\pi}{4}$, if m = -1 or m = 1; $\frac{\pi}{2}$, if -1 < m < 1. $256. \int_{-\infty}^{\infty} \frac{\sin^2 x \, dx}{x^2} = \frac{\pi}{2}.$

26

$$257. \int_{0}^{\pi} \cos(x^{4}) dx = \int_{0}^{\pi} \sin(x^{4}) dx = \frac{1}{2} \sqrt{\frac{\pi}{2}}.$$

$$258. \int_{0}^{\pi} \sin kx \sin mx dx = \int_{0}^{\pi} \cos kx \cos mx dx = 0, [k \neq m].$$

$$259. \int_{0}^{\pi} \sin kx \cos mx dx = \frac{2k}{k^{2} - m^{2}}, \text{ if } k - m \text{ is odd};$$

$$= 0, \text{ if } k - m \text{ is even.}$$

$$260. \int_{0}^{\pi} \sin^{2} mx dx = \int_{0}^{\pi} \cos^{2} mx dx = \frac{\pi}{2}.$$

$$261. \int_{0}^{\pi} \sin kx \cos kx dx = 0.$$

$$262. \int_{0}^{\pi} \frac{dx}{a + b \cos x} = \frac{\pi}{\sqrt{a^{2} - b^{2}}}, [a > b > 0].$$

$$263. \int_{0}^{\pi} \frac{\cos mx dx}{1 + x^{4}} = \frac{\pi}{2} \cdot e^{-\pi}.$$

$$264. \int_{0}^{\pi} \frac{\cos x dx}{\sqrt{x}} = \int_{0}^{\pi} \frac{\sin x dx}{\sqrt{x}} = \sqrt{\frac{\pi}{2}}.$$

$$265. \int_{0}^{\frac{\pi}{2}} \frac{dx}{\sqrt{1 - k^{4} \sin^{2} x}} = K$$

$$= \frac{\pi}{2} \Big[1 + \Big(\frac{1}{2}\Big)^{2} k^{8} + \Big(\frac{1 \cdot 3}{2 \cdot 4}\Big)^{8} k^{4} + \Big(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\Big)^{4} k^{6} + \cdots \Big], \text{ if } k^{3} < 1.$$

$$266. \int_{0}^{\frac{\pi}{2}} \sqrt{1 - k^{4} \sin^{2} x} \cdot dx = E$$

$$= \frac{\pi}{2} \Big[1 - \Big(\frac{1}{2}\Big)^{8} k^{2} - \Big(\frac{1 \cdot 3}{2 \cdot 4}\Big)^{8} \frac{k^{4}}{3} - \Big(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\Big)^{8} \frac{k^{6}}{5} - \cdots \Big], \text{ if } k^{4} < 1.$$

$$267. \int_{0}^{\pi} e^{-a^{2} x} dx = \frac{1}{2a} \sqrt{\pi} = \frac{1}{2a} r \Big(\frac{1}{2}\Big).$$

$$268. \int_{0}^{\pi} x^{n} e^{-a\pi} dx = \frac{\Gamma(n+1)}{a^{n+1}} = \frac{n!}{a^{n+1}}.$$

.

27

269. $\int_{-\infty}^{\infty} x^{2n} e^{-ax^3} dx = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^{n+1} a^n} \sqrt{\frac{\pi}{a}}.$ **270.** $\int_{1}^{\infty} e^{-x^3 - \frac{a^3}{x^3}} dx = \frac{e^{-2a}\sqrt{\pi}}{2}.$ 271. $\int_{-\infty}^{\infty} e^{-ax} \cos mx \, dx = \frac{a}{a^2 + m^2}, \text{ if } a > 0.$ **272.** $\int_{0}^{\infty} e^{-ax} \sin mx \, dx = \frac{m}{a^2 + m^2}, \text{ if } a > 0.$ **273.** $\int_{a}^{\infty} e^{-a^{2}x^{3}} \cos bx \, dx = \frac{\sqrt{\pi} \cdot e^{-\frac{b^{2}}{4a^{3}}}}{2a}.$ **274.** $\int_{0}^{1} \frac{\log x}{1-x} dx = -\frac{\pi^2}{6}$ **275.** $\int_{-1}^{1} \frac{\log x}{1+x} dx = -\frac{\pi^2}{12}$ **276.** $\int_{-1}^{1} \frac{\log x}{1-x^2} dx = -\frac{\pi^2}{8} \cdot$ **277.** $\int_{1}^{1} \log\left(\frac{1+x}{1-x}\right) \cdot \frac{dx}{x} = \frac{\pi^2}{4}$. **278.** $\int_{0}^{\infty} \log\left(\frac{e^{x}+1}{e^{x}-1}\right) dx = \frac{\pi^{3}}{4}.$ $279. \int_0^1 \frac{dx}{\sqrt{\log(\frac{1}{2})}} = \sqrt{\pi}.$ **280.** $\int_{-1}^{1} x^{m} \log\left(\frac{1}{x}\right)^{n} dx = \frac{\Gamma(n+1)}{(m+1)^{n+1}}, [m+1>0, n+1>0].$ **281.** $\int^{\frac{\pi}{2}} \log \sin x \, dx = \int^{\frac{\pi}{2}} \log \cos x \, dx = -\frac{\pi}{2} \cdot \log 2.$ **282.** $\int_{-\pi}^{\pi} x \cdot \log \sin x \, dx = -\frac{\pi^2}{2} \log 2.$

28

N.	0	1	2	3	4	5	6	7	8	9
1.	0.000	0.095	0.182	0.262	0.336	0.405	0.470	0.531	0.588	0.64
2.	0.693	0.742	0.788	0.833	0.875	0.916	0.956	0.993	1.030	1.06
3.	1.099	1.131	1.163	1.194	1.224	1.253	1.281	1.308	1.335	1.36
4. ·	1.386	1.411	1.435	1.459	1.482	1.504	1.526	1.548	1.569	1.58
5.	1.609	1.629	1.649	1.668	1.686	1.705	1.723	1.740	1.758	1.77
6.	1.792	1.808	1.825	1.841	1.856	1.872	1.887	1.902	1.917	1.93
7.	1.946	1.960	1.974	1.988	2.001	2.015	2.028	2.041	2.054	2.06
8.	2.079	2.092	2.104	2.116	2.128	2.140	2.152	2.163	2.175	2.18
9.	2.197	2.208	2.219	2.230	2.241	2.251	2.262	2.272	2.282	2.29

Natural Logarithms of Numbers between 1.0 and 9.9

Natural Logarithms of Whole Numbers from 10 to 109

N.	0	1	2	3	4	5	6	7	8	9
1	2.303	2.398	2.485	2.565	2.639	2.708	2.773	2.833	2.890	2.944
2	2.996	3.045	3.091	3.135	3.178	3.219	3.258	3.296	3.332	3.367
3	3.401	3.434	3.466	3.497	3.526	3.555	3.584	3.611	3.638	3.664
4	3.689	3.714	3.738	3.761	3.784	3.807	3.829	3.850	3.871	3.892
5	3.912	3.932	3.951	3.970	3.989	4.007	4.025	4.043	4.060	4.078
6	4.094	4.111	4.127	4.143	4.159	4.174	4.190	4.205	4.220	4.234
7	4.248	4.263	4.277	4.290	4.304	4.317	4.331	4.344	4.357	4.369
8	4.382	4.394	4.407	4.419	4.431	4.443	4.454	4.466	4.477	4.489
9	4.500	4.511	4.522	4.533	4.543	4.554	4.564	4.575	4.585	4.595
10	4.605	4.615	4.625	4.635	4.644	4.654	4.663	4.673	4.682	4.691

Values in Circular Measure of Angles which are given in Degrees and Minutes

1′	0.0003	9'	0.0026	3 °	0.0524	20°	0.3491	100°	1.7453
2'	0.0006	10′	0.0029	4 °	0.0698	30°	0.5236	110°	1.9199
3'	0.0009	20′	0.0058	5°	0.0873	40°	0.6981	120°	2.0944
4'	0.0012	30'	0.0087	6°	0.1047	50°	0.8727	130°	2.2689
5'	0.0015	40'	0.0116	70	0.1222	60°	1.0472	140°	2.4435
6′	0.0017	50'	0.0145	8 °	0.1396	70°	1.2217	150°	2.6180
7'	0.0020	1'	0.0175	9°	0.1571	80°	1.3963	160°	2.7925
8′	0.0023	2'	0.0349	10°	0.1745	90°	1.5708	170°	2.9671

Natural Trigonometric Functions

Angle	Sin	Свс	Tan	Ctn	Sec	Cos	
0 °	0.000	80	0.000	80	1.000	1.000	90 °
ĭ	0.017	57.30	0.017	57.29	1.000	1.000	89
2	0.035	28.65	0.035	28.64	1.001	0.999	88
8	0.052	19.11	0.052	19.08	1.001	0.999	87
4	0.070	14.34	0.070	14.30	1.002	0.998	86
5 °	0.087	11.47	0.087	11.43	1.004	0.996	85°
6	0.105	9.567	0.105	9.514	1.006	0.995	84
7	0.122	8.206	0.123	8.144	1.008	0.993	83
8	0.139	7.185	0.141	7.115	1.010	0.990	82
9	0.156	6.392	0.158	6.314	1.012	0.988	81
10 °	0.174	5.759	0.176	5.671	1.015	0.985	80 °
11	0.191	5.241	0.194	5.145	1.019	0.982	79
12	0.208	4.810	0.213	4.705	1.022	0.978	78
13	0.225	4.445	0.231	4.331	1.026	0.974	77
14	0.242	4.134	0.249	4.011	1.031	0.970	76
15°	0.259	3.864	0.268	3.732	1.035	0.966	75°
16	0.276	3.628	0.287	3.487	1.040	0.961	74
17	0.292	3.420	0.306	8.271	1.046	0.956	73
18	0.309	3.236	0.325	3.078	1.051	0.951	72
19	0.326	3.072	0.344	2.904	1.058	0.946	71
20 °	0.342	2.924	0.364	2.747	1.064	0.940	70 °
21	0.358	2.790	0.384	2.605	1.071	0.934	69
22	0.375	2.669	0.404	2.475	1.079	0.927	68
23	0.391	2.559	0.424	2.356	1.086	0.921	67
24	0.407	2.459	0.445	2.246	1.095	0.914	66
25°	0.423	2.366	0.466	2.145	1.103	0.906	65 °
26	0.438	2.281	0.488	2.050	1.118	0.899	64
27	0.454	2.203	0.510	1.963	1.122	0.891	63
28 29	0.469	2.130	0.532	1.881	1.133	0.883	62 61
	0.485	2.063	0.554	1.804	1.143	0.875	
30 °	0.500	2.000	0.577	1.732	1.155	0.866	60 °
31 32	0.515	1.942	0.601	1.664	1.167	0.857	59
32 33	0.530	$1.887 \\ 1.836$	0.625 0.649	1.600 1.540	1.179 1.192	0.848	58 57
33 84	0.545	1.788	0.649	1.483	1.192	0.839	56
35°	0.574	1.743					55°
30° 36	0.574	1.743	0.700 0.727	$1.428 \\ 1.376$	$1.221 \\ 1.236$	0.819 0.809	54
30 37	0.602	1.662	0.727	1.376	1.250 1.252	0.809	53
38	0.616	1.624	0.781	1.280	1.269	0.788	52
39	0.629	1.589	0.810	1.235	1.200	0.777	51
40°	0.643	1.556	0.839	1.192	1.305	0.766	50°
41	0.656	1.524	0.869	1.150	1.325	0.755	49
42	0.669	1.494	0.900	1.111	1.346	0.743	48
43	0.682	1.466	0.933	1.072	1.367	0.731	47
44	0.695	1.440	0.966	1.036	1.390	0.719	46
45°	0.707	1.414	1.000	1.000	1.414	0.707	45°
	Cos	Sec	Ctn	Tan	Свс	Sin	Angle

.

80

.

TABLES

Values of the Complete Elliptic Integrals, K and E, for Different Values of the Modulus, k

$$K = \int_0^{\frac{\pi}{2}} \frac{dz}{\sqrt{1 - k^2 \sin^2 z}}; \quad E = \int_0^{\frac{\pi}{2}} \sqrt{1 - k^2 \sin^2 z} \cdot dz.$$

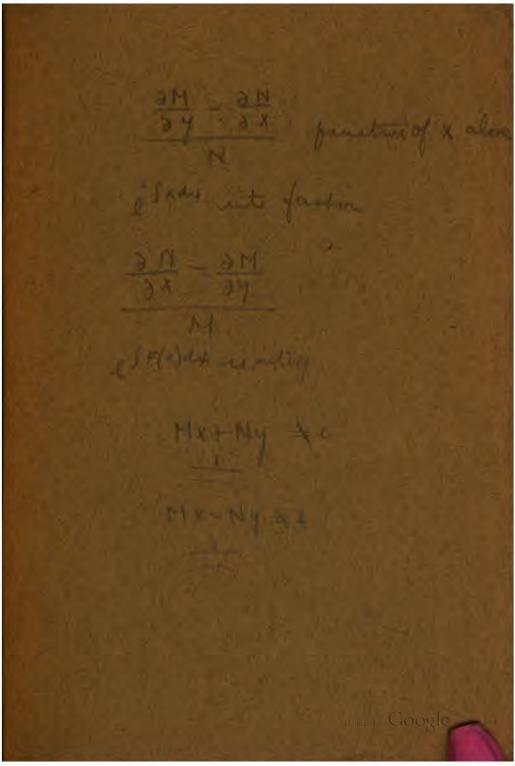
$\sin^{-1}k$	K	E	$\sin^{-1}k$	K	E	$\sin^{-1}k$	K	E
0°	1.5708	1.5708	50°	1.9356	1.3055	81.0°	3.2553	1.0338
ľ° .	1.5709	1.5707	51°	1.9539	1.2963	81.2°	3.2771	1.0326
20	1.5713	1.5703	52°	1.9729	1.2870	81.40	3.2995	1.0313
30	1.5719	1.5697	53°	1.9927	1.2776	81.6°	3.3223	1.0302
4 °	1.5727	1.5689	54°	2.0133	1.2681	81.8°	3.3458	1.0290
۶°	1.5738	1.5678	55°	2.0347	1.2587	82.0°	3.3699	1.0278
6°	1.5711	1.5665	56°	2.0571	1.2492	82.2°	3.3946	1.0267
70	1.5767	1.5649	57°	2.0804	1.2397	82.4°	3.4199	1.0256
80	1.5785	1.5632	58°	2.1047	1.2301	82.6°	3.4460	1.0245
9°	1.5805	1.5611	59°	2.1300	1.2206	82.8°	3.4728	1.0234
10°	1.5828	1.5589	60°	2.1565	1.2111	83.0°	3.5004	1.0223
ĩĩº	1,5854	1.5564	61°	2.1842	1.2015	83.2°	3.5288	1.0213
12°	1.5882	1.5537	62°	2.2132	1.1921	83.4°	3.5581	1.0202
18°	1.5913	1.5507	63°	2.2435	1.1826	88.6°	3.5884	1.0192
14°	1.5946	1.5476	64°	2.2754	1.1732	83.8°	3.6196	1.0182
15°	1.5981	1.5442	65°	2.3088	1.1638	84.0°	3.6519	1.0172
16°	1.6020	1.5405	65.5°	2.3261	1.1592	84.2°	3.6853	1.0163
17°	1.6061	1.5367	66.0°	2.3439 .	1.1546	84.4°	3.7198	1.0153
18°	1.6105	1.5326	66.5°	2.3622	1.1499	84.6°	3.7557	1.0144
19°	1.6151	1.5283	67.0°	2.3809	1.1454	84.8°	3.7930	1.0135
20°	1.6200	1.5238	67.5°	2.4001	1.1408	85.0°	3.8317	1.0127
21°	1.6252	1.5191	68.0°	2.4198	1.1362	85.2°	3.8721	1.0118
220	1.6307	1.5141	68.5°	2.4401	1.1317	85.4°	3.9142	1.0110
230	1.6365	1.5090	69.0°	2.4610	1.1273	85.6°	3.9583	1.0102
240	1.6426	1.5037	69.5°	2.4825	1.1228	85.8°	4.0044	1.0094
250	1.6490	1.4981	70.0°	2.5046	1.1184	86.0°	4.0528	1.0087
26°	1.6557	1.4924	70.5°	2.5273	1.1140	86.2°	4.1037	1.0079
27°	1.6627	1.4864	71.0°	2.5507	1.1096	86.4°	4.1574	1.0072
28°	1.6701	1.4803	71.5°	2.5749	1.1053	86.6°	4.2142	1.0065
290	1.6777	1.4740	72.0°	2.5998	1.1011	86.8°	4.2744	1.0059
30°	1.6858	1.4675	72.5°	2.6256	1.0968	87.0°	4.3387	1.0053
31°	1.6941	1.4608	73.0°	2.6521	1.0927	87.2°	4.4073	1.0047
32°	1.7028	1.4539	73.5°	2.6796	1.0885	87.4°	4.4812	1.0041
330	1.7119	1.4469	74.0°	2.7081	1.0844	87.6°	4.5619	1.0036
84°	1.7214	1.4397	74.5°	2.7375	1.0804	87.8°	4.6477	1.0031
35°	1.7312	1.4323	75.00	2.7681	1.0764	88.0°	4.7427	1.0026
36°	1.7415	1.4248	75.50	2.7998	1.0725	88.2°	4.8479	1.0022
370	1.7522	1.4171	76.0°	2.8327	1.0686	88.4°	4.9654	1.0017
38°	1.7633	1.4092	76.5°	2.8669	1.0648	88.6°	5.0988	1.0014
39°	1.7748	1.4013	77.0°	2.9026	1.0611	88.8°	5.2527	1.0010
40°	1.7868	1.3931	77.5°	2.9397	1.0574	89.0°	5.4349	1.0008
4 1°	1.7992	1.3849	78.0°	2.9786	1.0538	89.1°	5.5402	1.0006
42°	1.8122	1.3765	78.5°	3.0192	1.0502	89.20	5.6579	1.0005
43°	1.8256	1.3680	79.0°	3.0617	1.0468	89.3°	5.7914	1.0005
44 °	1.8396	1.3594	79.5°	3.1064	1.0434	89.4°	5.9455	1.0003
45°	1.8541	1.3506	80.0°	3.1534	1.0401	89.5°	6.1278	1.0002
46°	1.8691	1.3418	80.2°	3.1729	1.0388	89.6°	6.3504	1.0001
47°	1.8848	1.3329	80.4°	3.1928	1.0375	89.7°	6.6385	1.0001
48°	1.9011	1.3238	80.6°	3.2132	1.0363	89.8°	7.0440	1.0000
49°	1.9180	1.3147	80.8°	3.2340	1.0350	89.9°	7.7371	1.0000

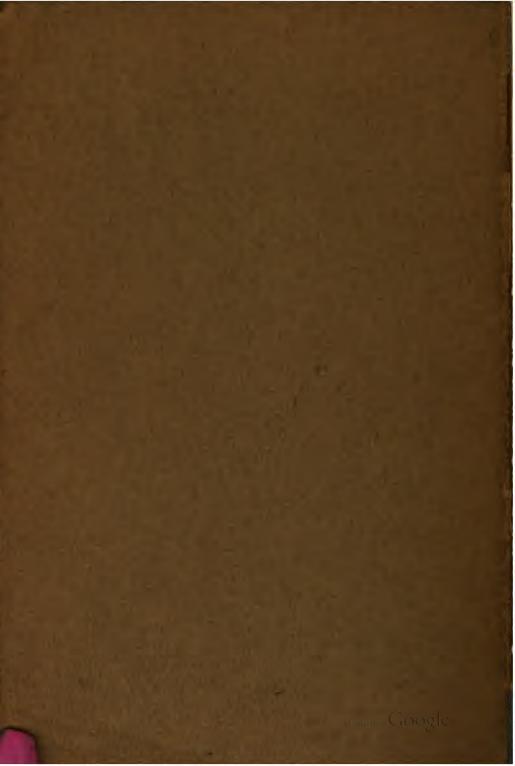
Common Logarithms of $\Gamma(n)$ for Values of n between 1 and 2.

						L *	· J		
n	$\log_{10}\Gamma(n)$	n	$\log_{10}\Gamma(n)$	n	$\log_{10}\Gamma(n)$	n	$\log_{10}\Gamma(n)$	n	$\log_{10} \Gamma(n)$
1.01	1.9975	1.21	ī.9617	1.41	ī.9478	1.61	ī.9517	1.81	ī.9704
1.02	1.9951	1.22	ī.9605	1.42	ī.9476	1.62	1.9523	1.82	ī.9717
1.03	ī.9928	1.23	ī.9594	1.43	1.9475	1.63	ī.9529	1.83	ī.9730
1.04	1.9905	1.24	1.9583	1.44	1 .9478	1.64	1.9586	1.84	ī.97 4 3
1.05	1.9883	1.25	1.9578	1.45	ī.9473	1.65	1.9543	1.85	ī.9757
1.06	1.9862	1.26	1.9564	1.46	1.9472	1.66	ī.955 0	1.86	ī.9771
1.07	ī.98 4 1	1.27	1.9554	1.47	ī.9473	1.67	ī .9558	1.87	1.9786
1.08	1.9821	1.28	1.9546	1.48	ī.9473	1.68	ī.9566	1.88	ī.9800
1.09	1.9802	1.29	1.9538	1.49	ī.9474	1.69	ī.9575	1.89	ī.9815
1.10	1.9783	1.80	1.9530	1.50	$\bar{1}.9475$	1.70	1.9584	1.90	ī.9831
1.11	1.9765	1.81	ī.9528	1.51	ī.9477	1.71	1 .9593	1.91	ī.9846
1.12	1.9748	1.32	1.9516	1.52	ī.9479	1.72	1.9603	1.92	1.9862
1.18	ī.9731	1.33	ī.9510	1.53	1.9482	1.78	ī.9613	1.93	1.9878
1.14	ī.9715	1.34	1 .9505	1.54	$\overline{1.9485}$	1.74	1.9623	1.94	ī.9895
1.15	ī.9699	1.35	1.9500	1.55	1.9488	1.75	1.9633	1.95	ī.9912
1.16	1.9684	1.36	1.9495	1.56	ī.9492	1.76	1.9644	1.96	ī.9929
1.17	1.9669	1.37	ī.9491	1.57	1.9496	1.77	1.9656	1.97	1.9946
1.18	1,9655	1.38	ī.9487	1.58	ī.9501	1.78	1.9667	1.98	1.9964
1.19	ī.9642	1.39	1.9483	1.59	1.9506	1.79	ī.9679	1.99	$\overline{1.9982}$
1.20	ī.9629	1.40	ī.9481	1.60	ī.9511	1.80	ī.9691	2.00	0.0000

$$\Gamma(n) = \int_0^\infty x^{n-1} \cdot e^{-x} dx = \int_0^1 \left[\log \frac{1}{x} \right]^{n-1} dx.$$

 $\left\{ \begin{matrix} \Gamma(z+1) = z \cdot \Gamma(z), & \text{if } z > 0; \\ \Gamma(z) = \Gamma(1) = 1; \\ [\Gamma(x) \cdot \Gamma(1-x)] = \pi/\sin \pi x, & \text{if } 1 > x > 0. \end{matrix} \right\}$


If the values of an analytic function, f(x), are given in a table for consecutive values of the argument, x, with the constant interval d, and if h = kd, where k is any desired fraction,


 $f(a+h) = f(a) + k \cdot \Delta_1 + \frac{k(k-1)}{2!} \cdot \Delta_2 + \frac{k(k-1)(k-2)}{3!} \cdot \Delta_3 + \cdots,$

where f(a) is any tabulated value.

f

